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Abstract

The Machenhauer non-linear initialization method as implemented at

NMC is shown to contain theoretical inconsistencies that probably explain

some of the convergence problems and restrictions that NMC has encountered.

The general remedy is to follow the Baer approach by (a) first setting

all fast mode amplitudes to zero and then (b) doing only one Machenhauer

iteration. Two exceptions to this prescription occur with intense oro-

graphic uplift and with intense release of latent heat. In these cases,

the large vertical velocities found in gravity waves will be needed to

get the correct starting field in step (a).
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1. Background.

Machenhauer (1976) suggested a way to eliminate "noise" from unwanted

high frequency oscillations in a numerical prediction. This was accom-

plished by first considering the initial data as mapped onto the spatial

modes of a reference atmosphere. Each such mode has its own frequency

of oscillation when it is acted on by the linearized equations of motion.

With some discretion, these modes can be divided into

S. Slow modes (small frequency)

F. Fast modes (large frequency)

Roughly speaking, S consists of Rossby waves and F of gravity waves.

One can write the full prediction equations symbolically, in

the following form:

-A $ S.. _ s v PoN h tF55) (l.la)

d__ = - e .aF 6 , ,oP' e; , r6 s (1.2)

S and F represent the amplitude of a slow and a fast mode, with frequencies

2.$ andjl FI, respectively. NL represents the spatial field of all non-linear

tendencies. PS and PF denote a projection of the latter field onto the

spatial structure of mode S and mode F.

Previous initialization methods using normal modes of a reference

atmosphere had simply set F . Machenhauer's extremely valuable

insight was to recognize that a better initial state might be obtained

through choosing Fat tao by ignoring the left side of (1.2):

F (It )- P. N4t {F S) 13
-a2
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where F and S in NL(F,S) are obtained from the input analysis. This

single step turned out to be not quite satisfactory in iachenhauer's

empirical tests. To improve the results, Machenhauer found it useful

in his barotropic model to iterate this process:

1F &,e o) _ I PF, /VA f F () *1.4)

Use of this method at NMC has been attended by considerable problems.

Most striking is the fact that (1.4) sometimes will not converge unless

it is restricted to the external and first internal vertical modes. Why

should this limitation exist, when the old-fashioned quasi-geostrophic

method (Phillips, 1962, p. 157) gives a unique non-iterative answer for

any detail in the vertical?

In this Note, I will illustrate two points that are implicit in the

published literature, but seem to merit stronger emphasis:

I. F in the NL term on the right side of (1.3) must be zero.

II. The iteration procedure (1.4) is not justified beyond

(1.3) unless accompanied by consideration of the left side of (1.2).

These requirements will be demonstrated by considering an extremely

simple model. This model will be analyzed in three ways:

a. Rossby number expansion of field variables.

b. Complete exact solution of the system.

c. Rossby number expansion of the normal mode equations.

The method is in the spirit of the approach by Baer (1977), but

should be much easier to understand. The results I and II are also

compatible with the conditions which Leith (1980) had to assume in order
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to demonstrate that this form of the Machenhauer method was equivalent

to the conventional quasi-geostrophic system.

Several exceptions that occur when AI F S) is large are

discussed briefly in a closing section.

2. Barotropic Free Surface Model on a Constant f Plane.

The equations for this model will be linear, with a uniform basic

current, A:

: -

.. p.
l .direction at the rate d/I jlt.m_ e/t Xso that (2. 1ac) does not con-

tain a term . d /d . An alternate interpretation of (2. 2b1) in

terms of a modal representation of a three-dimensional atmospheric model,

would be that it models the interaction between

(2.1c)

(a) At, representing the lowest order vertical mode of longitudinal wave

number zero, with

(b) the variables, (..tatw +#9corresponding to an arbitrary vertical

modThe grou and a single zonal wave numbefor simplici . These are sopewnwcifieard inby the y-

direction at the rate of so that (2.1c) does not con-:

.im An alternate interpretation of (2.1 ) in

terms of a modal representation of a three-dimensional atmospheric model,

would be that it models the interaction between

(a) AZ, representing the lowest order vertical mode of longitudinal wave

number zero, with

*~~~~~b th varabes,*oV + 4il iJ
: :

(2.2)

,4 , C ex (, 
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_Of#, with C 3 ~ ° would be an external mode.

_0 ~ The effect on.4A of the wave mode is obviously ignored, but is irrelevant

for this illustration. The terms on the right sides of (2.1) will

represent the NL field in equations (1.1) and (1.2). Although simple,

they imitate the most important and pervasive non-linearity in the behavior

of the atmosphere.

To simplify the notation and display the different approximation

procedures to define initial data, we make the variables non-dimensional

in the customary manner of the quasi-geostrophic expansion (Monin, 1958;

Charney, 1962; Phillips, 1962)

(2.3a)

"O k (2.3b)

= Q R / _ f If ~~~~~(2.3c)

-0 0 0 0~~~~ 0(2.3d):r: - Et / :.; . A. -S Alp, :0"

(2.3e)

k 7i _ / f (2.3f)

ot- 0it~t / +(2.3g)

The non-dimensional equivalents of (2.1) are

-ar ai -v~r aX ^- A. _ A'(2.4a)
. 0.
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* @ at 1~~~4-.> , w _ 9 ,A : (2.4b)
05S

~O' At~ to cr Of _ Am X s ~ (2.4c)

f. is the Rossby number, while 0r measures the squared ratio of the

length scale k' to the Rossby radius of deformation a/f.

We shall assume that all these variables have a time behavior char-

acterized by the "slow" advective time * , i.e. that a/ * is of

order unity. We also assume that @ / is of order unity, that 

is small and that is of order zero with respect to R . To simplify
A

the ensuing mathematics we then introduce the Fourier representation:

*Jr

V4r~~~ :VfI E y , (2.5)

Equations (2.4) can now be written as

I

jj 2 _ ¢' a _ _ z X 2> (2.6a)

# 14 *i Jr U (2.6b)

z74~~ Va -i 4 S c t ~~ 4 X 2} X(2.6c)

where ( ) denotes J ()/W t . The terms on the rhs of these equations

~ ~ are the "non-linear" interactions.
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We first perform a conventional Fir expansion of (2.6) for the field

variables, Vti 1E . Equations (2.6a) and (2.6b) both show that U is

at most of order R . If we set " , the parameter I would cancel in

(2.6a) and (2.6b). We will then have to deal only with

(2.7)

and only in (2.6c).

We carry out the quasi-geostrophic expansion by setting

[OF, V (IH.(*))[2IIIIOL4 a, ALJ6', (2.8)lutt)) VWt, wot, I 'r I f. , 

41 t O

where U , etc. are functions of . This yields the following approxi-

mation sequence upon substitution in (2.6):

VthS t t~ ~~t1- ~i ~Va >(2.9a)

IJ*~~~~~~ -_0~~~ A(2.9b)
--, -i _. ,N , Fw _¢t f

d (2.9c)

These are valid at all n for all t , according to our assumptions.

At zOi , (2.9c) gives the geostrophic relation

° 4 -o MP(2.10a)

(2.9a) and (2.9b) then give
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' UUO 9* =iY -

Together, these demonstrate that

To go to higher order it is efficient to first combine(2.9a)

and rewrite (2.9c) as

(2.10c)

(2.11a)

(2.11b)

and (2.9b) 1:

(2.12a)

(2.12b)
'I2w ' 'U -i I */

It then becomes immediately apparent by induction that the relations (2.11a)

and (2.11) hold for all orders of n. We therefore find from (2.8) that

the initial conditions for only "slow" time behavior in (2.4) or (2.6)

requires

U b to-) _ ow

(2.13)

1U is proportional to the divergence.
quasi-geostrophic "omega equation" for this
"balance equation".

(2.12a) is equivalent to the
model, and (2.12b) to the

(2.10b)

e

C(V.0- -rr M. )

V tt ,40 r- -50 ts t -- 0) 'O
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Let us now consider the complete behavior for arbitrary initial

ew 0 values of U, V, H. This will tell us if (2.13) is correct. To do this

we must solve (2.6), in which the slow time assumption has not yet been

enforced. We define the column matrix

-0~~~~~~~ X t { t )(2.14a)

so that (2.6) can be written as

(ZRo~ X * -c B , ~~~~(2.14b)

where a is the symmetric matrix

138 : 0 O t 4 \ \ (2.14c)

(The diagonal M terms come from the "non-linear" advection terms.)

The~three eigenvalues of are

(2.15a)

R& A

. .~~~~~~~~~~~~.

<3c~~~o- ~~~ bra ~(2.15b)

The frequencies in t units of system (2.14b) are given by j'/R '.

The parameter O is recognizable as the frequency of an

internal gravity wave in the time units defined by t in (2.3a):
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(2.16)

The three normalized orthogonal eigenvectors have the following components

for the variables (V, H, U):

,AA." = ( \ 0 / 0 (2.17a)

(2.17b)

L I I ao I O) / % no J

Ah:- ft-124J-t) Sow(2.17c)

(Note that these do not depend on Ro, and are identical with the eigen--

vectors for 1 if 2 :O .)

The slow solution is that for A andreO:

:~~~~~~~~~~~~

V e. \/ : K 4 c(2.18a)%1~~~~~- It 4'~

l- M d 1 a

m-'t
(2.18b)

(2.18c)

The quasi-geostrophic expansion of the field variables that resulted in

(2.13) as the initial conditions for U, V, and H has therefore determined

hL _

Q% k
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precisely those initial conditions for which the complete equation (2.6)

will produce only the slow solution (2J8).

For comparison, we now examine the initialization problem solved in

(2.6)-(2.13) by using the normal mode approach. We express ) as

(2.19)-olden aAll)* + sa 
The eigenvectorsoW-are defined by (2.17). Here we emphasize that they are

also the eigenvectors of the resting reference state matrix:

(:o 6 -I
(2.20)

It is in this sense that they are used in (2.19). Upon applying (2.19)

to (2.6), the following equations result

cl- _g~~ _(2.21a)

* . e

= _L.Y (3a _ e (2.21b)

· i Se, y : ft (2.21c)

In more complicated systems, the - ,t - "non-linear" terms would

couple these equations with one another.

We apply an expansion procedure similar to (2.8.)-(2.12) with the same

b ~requirement that ( ) is of order 1. Our model system is especially simple
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since each of (2.21) refers to only one model amplitude. The interesting

ones are (2.21b) and (2.21c). We define the small parameter

(2.22a)

J

and again set up a power series needed to consider, for example, (2.21b):

(2.22b)

(2.21b) becomes

P# _ "s~f~ - ' p - A ,(2.22c)

Insertion of (2.22b) gives, for," D , ... , at all Z,

( -i~~~~~~~~~~~2~ .- .OM.(2.23)

Since starts with 0, this immediately yields the conclusion

- -aI) - iEO eis i} 
and then, by induction,

A similar conclusion follows for ~ t ) · From this we conclude

that both 0 and je must vanish in order to give only a slow time solu-
tion. At t- , in particular, this means that the initial value of

V, H, and U are described by only the t eigenvector of (2.17a).

Thus we again get, correctly,
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V{{)::) ) a(2.24)
as in (2.13).

Let us now consider the Machenhauer approach to the modal system

(2.21b). In that approach / on the left side is completely ignored

and the second term --¢ on the rhs represents the projection onto

vector .Ar of the complete set of forecast time derivatives. In our

case his method gives rise to an iteration procedure (see equation (1.4):

C~ 6Jtgh AMR (2.25)

After a suitable number of iterations, l replaces the initial value of

in the modal representation of the input data.

Equation (2.25) has the solution

0 6 r ( ) 44 ~~~~~~~~~(2.26)

where s the projection on of the initially given X t )

Having gone through the geostrophic expansion procedure (2.6)-(2.13),

the complete solution procedure (2.14)-(2.19), and the modal method (2.22)-

(2.24), we know that the correct solution to get only the slow mode

solution is that should be zero. The Machenhauer techniques in this

simple case approaches the correct answer only if either the advective

frequency is small compared to the gravity wave frequency

; j A aC (2.27)
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or, if the input data already has no projection on 44 or

:} _Ht ' (2.28)

The version of the Machenhauer procedure in use at NMC does not use

(2.28). Therefore we can conclude that:

Much of the work done in the NMC Machenhauer iteration

scheme represents a laborious attempt to correct for the

failure to enforce (2.28) at the start of the process.

In doing so it will fail to converge when (2.27) is violated. This can

easily happen for the high order internal modes that have small values

of SO in the spherical three-dimensional set of normal modes.

A condition similar to (2.27) has also been encountered by Gollvik

(1980) in his study of initialization on an equatorial -plane. His

reported criterion (p. 21) of

U

corresponds to convergence only if

A second conclusion can be reached from (2.22c):

S = (2. 22c)
* (~~~~~~~NL)
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The left side is completely ignored in the Machenhauer iteration scheme.

In our simple model we have seen that the correct solution was simply

9 . Generalizing our view of this equation to a more general

system requires only that the NL term-iAis include not just9 , but

contributions from many other components. This more general form will be

0 n -&06 -:-¢ # t ¢ 5 0tF(6 5 , ¢{e J .( 2.29)

.,will be of order zero. (But see Section 3.) In terms of an

expansion in ,

of ¢t )bf 0 E )C(2.30)

we obtain

'a ,4 3uu- &f ipo ) '

where iP uses 

At ozo: we again get1

(2.32)

(2.31)
I

At id 01 we obtain

1Daley (1978) removed the initial divergence in his tests. This amounts

only to making the difference a-- equal to zero in (2.21)-(2.26). It

does not remove the sum (-t ' which represents the difference between

vorticity and the Laplacian of the geopotential field.

(3'O = 0.

0



16

(30 - F t i do As 5(2.33)

This would be the first Machenhauer iteration if one started it with - .

But, at A'5 , we get

: :

: * *~~~~~~~~~

The time derivative cannot generally be ignored after the first (corrected)

Machenhauer iteration. Our second conclusion is therefore

Even if the Machenhauer process is corrected by

starting with zero gravity mode amplitude, only one

iteration is meaningful.

Further improvement must consider the 3 term, and we would enter

upon the Baer approach.

3. Concluding Remarks.

The purpose of this note is primarily to point out how the Machenhauer

method, as it has been implemented at NMC, must be changed. This correction

is only a first step. Some of the problems remaining in initialization are

as follows.

a. The correct choice of the Al 5 field -- i.e. the fixed values

of the slow mode amplitudes -- is important. A variational analysis is

desirable in this step so that proper attention is paid to the relative

accuracy of temperature, surface pressure, and wind data in the input

analysis, and to their accuracies in different geographic regions.

1t .: R

0
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Daley (1978) has explored such an approach. However, his approach assumes

that the analysis weights are known very accurately1. The uncertainties in

them seem to me to justify combining the variational procedure only with

the first step in the initialization process, that of obtaining the (fixed)

amplitudes of the slow modes.

b. The effect of non-transient heating fields must be considered.

This is especially critical for the release of latent heat in low latitudes,

where this heating must be balanced by large upward vertical motions if

a slow time solution is to result. This creates a dilemna, since only

the fast modes have appreciable vertical velocity, and they have been

zeroed out in step (2.32). In these circumstances, moreover, F in (2.29)

will no longer be of order one. A special treatment is evidently needed

to get the fast modes needed to balance these intense heating fields. This

task will be simplified to the extent that only those "fast" modes having

maximum amplitude near the equator need be considered.

c. A similar problem will occur if orographic uplift creates

vertical velocities so large that the tendencies in NL can only be matched

by gravity waves (see Phillips, 1962, p. 138). These regions are scattered

over the globe and their existence will vary from day to day depending on

the strength of the horizontal velocity perpendicular to the orographic

slope. Their interpretation is also confounded by the presence of large

vertical truncation error near the tropopause in the computation of the

horizontal pressure force in sigma coordinates. A satisfactory treatment

of these regions in initialization will therefore be of necessity more

empirical than that needed to resolve problem b.

lHe does a variational technique in each step of a Machenhauer

(preferably, Baer) iteration.
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d. If the present NMC system is replaced by one or several Baer

steps, we may still expect some "convergence" problems even though (2.27)

is no longer relevant. For example, Daley (1978, p. 210; see also Tribbia,

1979) encountered difficulties in a barotropic model in regions when the

ellipticity condition for the balance equation is violated. This is a

condition on smallness of the Rossby number in anticyclonic vorticity, and

is relevant even in a barotropic model. Another condition in synoptic

scale baroclinic motions will involve the Richardson number:

(3.1)

Although E 40'/ for normal synoptic motions, it can become 0(1) in

sharp frontal zones. It can be even smaller when saturation exists in

air of nearly uniform equivalent potential temperature. These are the

situations which can give rise to extremely rapid baroclinic cyclogenesis

(and on smaller than normal length scales); we cannot expect routine

application of non-linear initialization to be useful in these regions.

e. In initialization of the initial field for a real forecast,

the goal is, to a considerable extent, cosmetic. This is because the

variational analysis (a, above) will affect weather forecasts, while

(2.33)-(2.34) mostly eliminate distracting noise by anticipating the

dispersive adjustments that would otherwise occur in the early part of

the forecast. But for the data assimilation system (the NMC "final

cycle"), the tropical and subtropical moisture, mass, and momentum

fields are, because of lack of data, mainly determined by the "general

circulation" behavior of the forecast model used in the assimilation

cycle. For example, the mean meridional circulation in the atmosphere

w ~and in the assimilation model moves moisture into the latitudes of the
<A
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intertropical convergence zone. This circulation is forced by the fields

of heating, eddy transports, and friction. The first two of these will be

accounted for in the initialization process, if a satisfactory solution of

point b is achieved. Friction, while equally important to the heating overall,

operates on larger horizontal space scales than does the tropical convective

heating. As such it probably does not destroy the condition F f 

in (2.29). Instead the problem here will be connected with the fact

that the normal modes being used are for a friction-less atmosphere, and

tend to have a maximum of horizontal velocity at the ground. These

would be completely inconsistent with a no-slip frictional boundary

condition at the ground. It remains to be seen how well they can represent

the usual meteorological drag law, and Ekman-like ageostrophic circulations,

in low latitudes.
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